Neutralino relic density in SUSY GUTs

A.Belyaev Florida State University in collaboration with Howie Baer and Csaba Balazs June 17, 2002 SUSY02, the 10th International Conference on Supersymmetry and Unification of Fundamental Interactions DESY Hamburg

<u>OUTLINE</u>

- Status of CDM: experiment and theory
- Strategy and details of calculation
- Results for mSUGRA model
- SO(10) SUSY GUTs and Extra dimensions
- Conclusions

Introduction

- Experimental data:
 - Galactic rotation curves
 - ♦ High resolution maps of CMB
 - Large scale structure of the Universe
 - Supernova Type I data

Combining, the above data we have:

 $\Omega_{tot} = \rho/\rho_c \simeq 1$ $\Omega_{\Lambda} \simeq 0.7$ $\Omega_M = 0.3 \pm 0.1$ $\Omega_{M_b} = 0.020 \pm 0.002$ $\Omega_c h^2 \simeq 0.2 \pm 0.1$

Total energy Dark energy Matter Barionic matter Cold Dark Matter

- Why Supersymmetry?
 - Solves hierarchy problem of the SM, unifies gauge couplings, EWSB driven by radiative corrections
 - Incorporates gravity
 - Provides with the best CDM candidate: the lightest neutralino !

- Steady improvement in the quality of neutralino relic density in SUSY Goldberg(83), Ellis, Hagelin, Nanopoulos, Srednicki(83) → 2002
 - Standard procedure is to convolute neutralino annihilation cross sections (CS) with Boltzmann thermal distribution.

Traditional CS expansion in terms of neutralino velocity – angular and energy integrals can be evaluated analytically

- Importance of co-annihilation processes/ resonant annihilation — Griest and Seckel(91)
- Formulae for *relativistic* thermal averaging worked out by Gondolo & Gelmini(91).

Large $\tan \beta$ neutralino annihilation can be dominated by s-channel A and H resonances — Drees-Nojiri(93)

- Formalism extended for the co-annihilation case by Edsjö and Gondolo(97)
- Importance of the neutralino-slepton coannihilation was stressed out in various papers: Mizuta-Yamaguchi(93), Drees-Nojiri(93), Ellis-Falk-Olive(98,99),Gomes-Lazarides-Pallis(00), Baer-Balazs-A.B(02)
- Large values of A₀ or for non-universal scalar masses: stop or sbottom masses could become degenerate with Z̃₁ and squark coannihilation processes could become important: Boehm-Djouadi-Drees(00), Ellis-Olive-Santoso(01)

References

- H. Goldberg(83)
- Ellis, Hagelin, Nanopoulos, Olive, Srednicki(84)
- Srednicki, Watkins, Olive; Barbieri, Berezinsky; Griest (88)
- Barbieri, Frigeni and Giudice (89)
- Griest, Kamionkowski and Turner; Jungman (90)
- Griest, Seckel (91)
- Gelmini, Gondolo (91)
- Ellis, Gelmini, Lopez, Nanopoulos, Sarka(92)
- Bottino, de Alfaro, Fornengo, Mignola, Scopel; Berezinsky (92)
- Drees, Nojiri(93)
- Roszkowski, Roberts(93); Kane, Kolda, Roszkowski, Wells(94)
- Nath, Arnowitt(93)
- Baer, Brhlik (96); Baer, Brhlik, Diaz, Ferrandis, Mercadante, Quintana, Tata (01)
- Edsjö, Gondolo(97)
- Barger, Kao(98)
- Ellis, Olive, Schmitt(97); Ellis, Falk, Olive(98)
- Lahanas, Nanopoulos, Spanos(99,00,01)
- Feng, Matchev, Wilczek (00)
- Gomez, Lazarides, Pallis(00)
- Boehm, Djouadi, Drees (00)
- Arnowitt, Dutta, Santoso (01)
- Roszkowski, Ruiz de Austri, Nihei(01,02)
- Ellis, Olive, Santoso (01)
- Birkedal-Hansen, Nelson(01)
- Belanger, Boudjema, Pukhov, Semenov(01)

Recent studies aim to update CDM results

- Perform the *relativistic* relic density calculation including *all relevant* annihilation and co-annihilation processes.
- Update the relic density consistent with ISAJET set of SUSY models for comparison with collider search/reach results (Baer,Balazs,A.B)
- Relic density informs us about the favored parameter space regions, and likely collider signatures.
- Especially check the large $\tan \beta$ region and consistency of the favored region of parameter space with g-2 and $b \to s\gamma$ and $B_s \to \mu^+\mu^-$ data

Details of calculations

• The evolution of the number density of supersymmetric relics (following Griest and Seckel)

$$\frac{dn}{dt} = -3Hn - \langle \sigma_{eff} v \rangle \left(n^2 - n_{eq}^2 \right)$$

where $n = \sum_{i=1}^{N} n_i$ and the sum extends over the N particle species contributing to the relic density, n_i – the number density of the *i*th species. $n_{eq,i}$ given by

$$n_{eq,i} = \frac{g_i m_i^2 T}{2\pi^2} K_2 \left(\frac{m_i}{T}\right),$$

Details of calculations (continued)

• $\langle \sigma_{eff} v \rangle$ is the thermally averaged cross section times velocity (Gondolo and Gelmini, Edsjö and Gondolo):

$$\langle \sigma_{eff} v \rangle(x) = \frac{\int_2^\infty K_1\left(\frac{a}{x}\right) \sum_{i,j=1}^N \lambda(a^2, b_i^2, b_j^2) g_i g_j \sigma_{ij}(a) da}{4x \left(\sum_{i=1}^N K_2\left(\frac{b_i}{x}\right) b_i^2 g_i\right)^2},$$

where $x = T/m_{\widetilde{Z}_1}$, σ_{ij} is the cross section for the annihilation reaction $ij \to X$, $a = \sqrt{s}/m_{\widetilde{Z}_1}$ and $b_i = m_i/m_{\widetilde{Z}_1}$

• The relic density of neutralinos is given by

$$\Omega_{\widetilde{Z}_1} h^2 = \frac{\rho(T_0)}{8.1 \times 10^{-47} \text{ GeV}^4}$$

where

$$\rho(T_0) \simeq 1.66 \frac{1}{M_{Pl}} \left(\frac{T_{m_{\widetilde{Z}_1}}}{T_{\gamma}}\right)^3 T_{\gamma}^3 \sqrt{g_*} \frac{1}{\int_0^{x_F} \langle \sigma_{eff} v \rangle dx}.$$

• The freeze-out temperature $x_F = T_F/m_{\widetilde{Z}_1}$ is determined as usual by an iterative solution of the freeze-out relation

$$x_F^{-1} = \log\left[\frac{m_{\widetilde{Z}_1}}{2\pi^3} \frac{g_{eff}}{2} \sqrt{\frac{45}{2g_*G_N}} \langle \sigma_{eff} v \rangle(x_F) x_F^{1/2}\right]$$

Here, g_{eff} denotes the effective number of degrees of freedom of the co-annihilating particles. The quantity g_* is the parameter of SM effective degrees of freedom. with $\sqrt{g_*} \simeq 9$ over our region of interest.

Details of calculations (continued)

The challenge is to evaluate all possible channels for neutralino annihilation to SM and/or Higgs particles, and also all co-annihilation reactions.

• Code of Baer-Balazs-A.B.

igstarrow initial state: \widetilde{Z}_1 , \widetilde{Z}_2 , \widetilde{W}_1 , \widetilde{e}_1 , $\widetilde{\mu}_1$, $\widetilde{ au}_1$, \widetilde{t}_1 and \widetilde{b}_1

relativistic thermal averaging

- exact calculations: CompHEP 1722 subprocesses, 7618 diagrams, about 50 MB of FORTRAN code
- weak scale parameters from supersymmetric models are generated using ISAJET and interfaced with the squared matrix elements from CompHEP

for our final result with relativistic thermal averaging, a three-dimensional integral must be performed over

i.) the final state subprocess scattering angle heta

ii.) the subprocess energy parameter $a = \sqrt{s}/m_{\widetilde{Z}_1}$

iii.)the temperature T from freeze-out T_F to the present day temperature of the universe.

About two orders of magnitude more CPU-time consuming than series expansion approach, which requires just one numerical integration

- Recent package: MicOMEGAs (Belanger, Boudjema, Pukhov, Semenov)
 - all coannihilation channels with neutralinos, charginos, sleptons, squarks and gluinos
 - ♦ all matrix elements based on the CompHEP
 - one-loop corrected Higgs width(based on the HDECAY)
 - \blacklozenge relic density with any particle as the LSP
 - Iink with ISASUGRA/ISAJET
 - subroutines for calculation of constraints on the MSSM parameters are included:
 - direct limits from colliders, $\Delta
 ho$, $b
 ightarrow s \gamma$ and $(g-2)_{\mu}$
 - total number of subprocesses is about 2800: creating and linking libraries during the run
 - g^* is tabulated as a function of T about 5% effect for the relevant range of Ω_c
- Previous publically available packages:
 - Neutdriver(96) (Jungman, Kamionkowski, Griest)
 - DarkSUSY(00) (Gondolo, Edsjö, Bergstrom, Ulio, Baltz)

• $\Omega_{\widetilde{Z}_1}h^2$ in the $m_0 vs. m_{1/2}$ plane in the minimal supergravity model for $A_0 = 0$, $\tan \beta = 10$ and for $\mu < (>)0$ Red and white regions are excluded: red — lack of REWSB, a charged LSP white — $\Omega_{\widetilde{Z}_1}h^2 > 1 \rightarrow$ the age of universe $< 10 \times 10^9$ years

- Low values of $m_0: \tilde{Z}_1 \tilde{Z}_1 \rightarrow \ell^+ \ell^-$ is dominated via *t*-channel slepton exchange.
- The lowest values of m_0 : the rate is sharply increased by neutralino-stau and stau-stau co-annihilations (Ellis et al.)
- As m_0 increases, the slepton masses also increase, suppressing the annihilation cross section and rising the relic density
- When m_0 increases further annihilation rate is dominated by scattering into WW, ZZ and Zh.
- $m_{\widetilde{Z}_1} \simeq m_{\widetilde{W}_1} \simeq m_{\widetilde{Z}_2}$, co-annihilation channels increase even more the annihilation rate.

relic density regions are qualitatively different from the lower $\tan\beta$ plots

•
$$\mu < 0, \tan \beta = 45$$
:

- \blacklozenge diagonal strip annihilation through s-channel A and H
- the A and H widths are typically 20-60 GeV. Even if $|2m_{\tilde{Z}_1}-m_{A(H)}|$ is relatively large, efficient annihilation can still take place.
- ♦ the relic density changes slowly on the flanks of the annihilation corridor ⇒ little fine tuning
- $\mu > 0, \tan \beta = 52$:
 - relic density annihilation corridor occurs near the boundary of the excluded $\tilde{\tau}_1$ LSP region
 - the width of the A and H Higgs ranges from 30 GeV for $m_{1/2}\sim 400$ GeV, to 110-130 GeV for $m_{1/2}\sim 2000$ GeV
 - *none* of the entire parameter plane is excluded by $\Omega_{\widetilde{Z}_1} h^2 > 1!$

Fine-tuning measure

•
$$\Delta(m_0) = \left| \frac{m_0}{\Omega_{\widetilde{Z}_1} h^2} \frac{\partial \Omega_{\widetilde{Z}_1} h^2}{\partial m_0} \right|$$
 (Ellis and Olive)

• $\tan\beta - m_0$ plane

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	weak scale sparticle masse	$s A_0 = 0$	and m_t	= 1/5 G	ev.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	parameter			value		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	point	1	2	3	4a	4b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_0	100	165	1200	2750	800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_{1/2}$	300	550	250	1800	800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\tan(\beta)$	10	10	10	45	52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$sgn(\mu)$	1	1	1	-1	1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{ ilde{g}}$	701.4	1225.6	658.0	3810.8	1757.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{{ ilde u}_L}$	630.7	1099.1	1271.1	4185.0	1715.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{{ ilde u}_R}$	611.1	1060.0	1269.1	4080.7	1662.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{{ ilde d}_L}$	635.6	1102.0	1273.6	4185.8	1717.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{{\widetilde d}_B}$	610.0	1055.7	1269.6	4067.4	1656.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{b}_1}$	584.9	1020.8	1072.4	3501.7	1484.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{b}_2}$	610.7	1053.4	1260.8	3537.6	1539.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{t}_1}$	471.7	858.5	825.2	3213.2	1328.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{t}_2}$	648.1	1064.0	1084.3	3529.6	1533.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{ ilde{ u}_e}$	216.4	396.7	1203.1	2972.3	952.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{\tilde{e}_L}$	230.4	404.5	1205.7	2973.4	955.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$m_{\tilde{e}_B}$	155.5	264.8	1201.7	2822.1	851.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\tilde{\nu}_{ au}}$	215.6	395.4	1198.0	2750.8	834.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{ ilde{ au}_1}$	147.5	257.6	1191.0	2320.8	524.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{ ilde{ au}_2}$	233.4	405.2	1200.8	2752.6	847.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{Z}_1}$	117.5	225.1	88.6	785.0	336.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{Z}_2}$	215.1	416.9	144.1	1235.1	620.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{Z}}$	398.5	668.1	198.2	1249.2	848.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{z}}$	417.8	682.8	260.9	1461.7	862.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{u}}$	214.7	416.9	136.5	1234.5	620.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\widetilde{i}}^{W_1}$	418.0	682.6	260.3	1461.7	862.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{b}	114 7	119.0	114 4	123 9	121 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m_H	443.9	766 5	1204 9	1495.2	810 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m _c A	443.3	765.7	1203 9	1494 2	809.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{\mu+}$	450 7	770.4	1200.0	1498.4	816 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	···•п ' П.	392.0	664.9	188 7	-1247 2	845.8
$BF(b \to s\gamma) \times 10^{4} \qquad 3.12 \qquad 3.46 \qquad 3.20 \qquad 3.92 \qquad 2.85$ $u_{\mu}^{SUSY} \times 10^{10} \qquad 22.6 \qquad 7.13 \qquad 2.65 \qquad -1.48 \qquad 10.2$ $BF(B_{c} \to \mu^{+}\mu^{-}) \times 10^{7} \qquad 0.0399 \qquad 0.0389 \qquad 0.0384 \qquad 0.0306 \qquad 0.0870$	Ωh^2	0 232	0 218	0 262	0 210	0 181
$u_{\mu}^{SUSY} \times 10^{10}$ 22.6 7.13 2.65 -1.48 10.2 BF($B_{\nu} \rightarrow \mu^{+}\mu^{-}$) × 10 ⁷ 0.0399 0.0389 0.0384 0.0306 0.0870	$BF(h \rightarrow s\gamma) \times 10^4$	3 12	3 46	3 202	3 92	2.85
$R_{\mu} \rightarrow \mu^{+} \mu^{-} \rightarrow 10^{7} - 0.0399 - 0.0389 - 0.0384 - 0.0306 - 0.0870$	$a^{SUSY} \times 10^{10}$	22.6	7 1 R	2.65	_1 48	10.2
	$\frac{\mu}{BF(R \rightarrow \mu^{+}\mu^{-})} \times 10^{7}$	0 0300	0 0380	0 0384	0 0306	0 0870

weak scale sparticle masses $A_0 = 0$ and $m_t = 175$ GeV.

Relic density in SO(10) SUSY GUT model (Baer et al.)

- ($\psi(\mathbf{16}), \phi(\mathbf{10})$) unifies matter and interactions
- Yukawa coupling unification
- \blacklozenge R-parity is conserved
- REWSB regained by D-term splitting in scalar masses due to the breakdown of SO(10):

$$m_Q^2 = m_E^2 = m_U^2 = m_{16}^2 + M_D^2$$
$$m_D^2 = m_L^2 = m_{16}^2 - 3M_D^2$$
$$m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$$

m₁₆ (GeV)

m₁₆ (GeV)

SUSY GUTs in Extra dimensions and relic density

- Problems in 4D: mechanism of SUSY breaking, flavor violation, doublet-triplet splitting, proton decay, CP and µ problems
- Solution in XD: orbifold compactification preserve positive features of 4D GUT and solves its problems

(Kawamura; Hall,Nomura; Altarelli,Feruglio; Kobakhidze; Hebecker,March-Russel; Asaka,Buchmuller,Covi; Dermisek,Mafi; Hall,Nomura,Okui,Smith):

existence of brane(s) at orbifold fixed points on which the gauge symmetries the subgroup of the GUT symmetry

Gaugino-mediated SUSY breaking

- universal case $\Rightarrow \tilde{\tau}$ is LSP or small B-term problem
- in XD scenario: SUSY is broken on a brane with the restricted symmetry non-universal gaugino masses are generated \Rightarrow solution

Non-universal gaugino-mediated SUSY breaking

(Baer, Balazs, A.B., Dermisek, Mafi, Mustafayev)

 ♦ Pati-Salam case: SU(4) × SU(2)_L × SU(2)_R symmetry on a brane ⇒
 M₁ = 3/5M₂ + 2/3M₃ at M_c ≤ M_{GUT} with m₀ ≈ A₀ ≈ 0 model parameters: M₂, M₃, tan β, sing(μ)

Independent gaugino masses: SU(3)_c × SU(2)_L × U(1)_Y symmetry on a brane ⇒
 model parameters: M₁, M₂, M₃, tan β, sing(µ) ⇒ large viable regions for all parameters (provided M₁ is large enough)

Independent gaugino masses, µ>0

Independent M_1, M_2, M_3 scenario, $\mu > 0$, tan $\beta = 30$

Summary

- Neutralino relic density plays crucial role in the restricting parameter space of SUSY models
- Importance of including all $2\to 2$ neutralino annihilation and co-annihilation processes including relativistic thermal averaging
- SUGRA case: there are four regions of parameter space that lead to relic densities satisfying cosmological measurements $(0.1 < \Omega_{\widetilde{Z}_1}h^2 < 0.3)$
 - 1. annihilation through t-channel slepton (low m_0 and $m_1/2$)
 - 2. stau co-annihilation region (very low m_0 but large $m_1/2$)
 - 3. focus point region (large m_0 but low to intermediate $m_1/2$)
 - 4. flanks of neutralino s-cannel annihilation via A and H corridor at large $\tan \beta$ when Γ_A and Γ_H are very large
- Co-annihilations are on the edges of the model parameter space, where some amount of fine-tuning is necessary to obtain a reasonable relic density. Alternatively, at high tan β, annihilation through very broad Higgs resonances gives rise to an acceptable neutralino density.
- In Yukawa unified SO(10) SUSY GUT models, relic density is reasonable over wide regions of parameter space.
- XD SO(10) SUSY GUT
 - \blacklozenge solves problems of 4D SO(10)
 - non-universal gaugino scenario leads to viable parameter space
 - ◆ Pati-Salam scenario ⇒ parameter space is tightly restricted
 - Independent $M1, M_2, M_3$ scenario \Rightarrow viable region of parameter space is large, provided M_1 is sufficiently large
 - relic density is below expectations from cosmological measurements (non-negligible higgsino component to the LSP). One may expect additional CDM states associated, for instance, with the hidden brane.